Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance
نویسندگان
چکیده
The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.
منابع مشابه
Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction
Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-...
متن کاملUltradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes
Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an u...
متن کاملReduced graphene oxide anchoring CoFe2O4 nanoparticles as an effective catalyst for non-aqueous lithium-oxygen batteries.
CoFe2O4 nanoparticles were uniformly anchored on reduced graphene oxide by a facile solvothermal method. The obtained CoFe2O4/reduced graphene oxide (CoFe2O4/rGO) hybrid was employed as catalyst for Li-O2 batteries. It could effectively lower the ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) overpotentials of the batteries and deliver a large capacity of 12 235 mA h grGO(-...
متن کاملS, N‐Co‐Doped Graphene‐Nickel Cobalt Sulfide Aerogel: Improved Energy Storage and Electrocatalytic Performance
Metal sulfides are commonly used in energy storage and electrocatalysts due to their redox centers and active sites. Most literature reports show that their performance decreases significantly caused by oxidation in alkaline electrolyte during electrochemical testing. Herein, S and N co-doped graphene-based nickel cobalt sulfide aerogels are synthesized for use as rechargeable alkaline battery ...
متن کاملHydrothermal synthesis of nitrogen doped graphene supported cobalt ferrite (NG@CoFe2O4) as photocatalyst for the methylene blue dye degradation
A magnetic NG@CoFe2O4 photocatalyst was developed via a facile hydrothermal method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM) techniques. The CoFe2O4 nanoparticles were found to have a size between 100-150 nm and were unifo...
متن کامل